Seresco: (pronounced Sir-ES-co) meaning “to become dry”

Installation and Operation Manual

NE Series Dehumidifiers

For NE-004-016 Models:
PV, NV, PH and NH Configuration Natatorium Dehumidifiers
NC Series Outdoor Air-cooled Condensers

The Energy Cycle
CAUTION

ONLY TRAINED, QUALIFIED PERSONNEL SHOULD INSTALL AND/OR SERVICE SERESCO EQUIPMENT. SERIOUS INJURY AND PROPERTY DAMAGE CAN RESULT FROM IMPROPER INSTALLATION/SERVICE OF THIS EQUIPMENT. HIGH VOLTAGE ELECTRICAL COMPONENTS AND REFRIGERANT UNDER PRESSURE ARE PRESENT

1-888- SERESCO (737-3726)

Additional copies of this manual can be downloaded from: www.seresco.net

Seresco Technologies Incorporated
1283 Algoma Road, Unit 1
Kanata, Ontario,
K1B 3W7
TABLE OF CONTENTS

1. **Introduction** ... 4
 1.1 Packaged Mechanical Refrigeration Systems .. 5
 1.2 NE Series Dehumidifier features .. 6

2. **Installation** .. 7
 2.1 Uncrating and Inspecting ... 7
 2.2 Mounting and Service Clearance ... 7
 2.3 High Voltage Electrical Connections ... 8
 2.3.1 Wire and Fuse Sizing .. 8
 2.3.2 Line Voltage Connections ... 8
 2.4 Control Wiring .. 8
 2.5 Controller and Programming .. 9
 2.5.1 Normal Mode and Programming ... 10
 2.5.3 Logs .. 11
 2.5.5 Sensors and locations ... 12
 2.6 System Design Overview .. 13
 2.6.1 System duct design and air pattern ... 13
 2.6.2 Evaporation rate and latent loads .. 14
 2.6.3 Required Access Space ... 14
 2.6.4 Exhaust Air ... 15
 2.6.5 Supply Air flow ... 15
 2.6.6 Cooling and Heating loads ... 15
 2.6.7 Outdoor Air .. 15
 2.7 Condensate Drain ... 16
 2.8 Pool Water Heating (PH AND PV Models Only) ... 16
 2.8.1 Water Flow Schedule .. 16
 2.8.1 Pool Water Piping Diagram .. 17
 2.9 Outdoor Air-cooled Condenser Installation .. 18
 2.9.1 Refrigerant Piping to Remote Condensers ... 18
 2.9.2 Charging of Remote Condensers ... 19

3. **Pool Water Chemistry** ... 20

4. **Start-up Procedures** .. 21
 4.1 Pre Start-up ... 21
 4.2 Start-up Procedure .. 21
 4.3 System Operation Modes ... 22
 4.3.1 Power On ... 22
 4.3.2 Dehumidification Mode ... 22
 4.3.3 Air Conditioning Mode ... 22
 4.3.4 Pool Water Heating Mode (PH AND PV Models Only) .. 22
 4.3.5 Blower Operation ... 22
 4.3.6 Compressor Start Sequence ... 23
 4.3.7 Air Heat Demand ... 23

5. **Service and Maintenance** .. 23
 5.1 Routine Maintenance ... 23
 5.2 Compressor Replacement ... 23

6. **Service References** .. 24
 6.1 Nameplate ... 24
 6.2 Mechanical System Trouble shooting ... 25
 6.3 Microprocessor Trouble shooting .. 27
 6.4 Blower Adjustment Procedure ... 28
 6.5 Basic Unit Operation ... 28
 6.6 Factory Start-up Supervision .. 29
 6.7 Warranty ... 30
 6.8 Refrigeration Diagrams .. 32
 6.9 Field Wiring Diagram ... 33
 6.10 Typical Electrical Panel Layout ... 33
 6.11 Warranty Registration and Start-up Report .. 34
1. Natatorium: a facility that contains an indoor pool, whirlpool or spa ranging in size from a small residential installation to a large commercial indoor waterpark.

Seresco’s Natatorium Dehumidifiers were developed by a team of industry experts with a lifetime of experience developed while working with many thousands of indoor pools. A natatorium has many critical design issues that must be fully understood and properly addressed to ensure years of comfortable and trouble free operation of the facility.

This booklet contains valuable design guidelines based on Seresco’s extensive knowledge and experience in solving humidity control problems in many thousands of indoor pool installations. Seresco Technologies Inc., manufacturer of the NE Series of natatorium air quality control systems is dedicated to providing state-of-the-art features and design, quality engineering and the most reliable products in the market.

The environment in a natatorium should be the same as in any other room in a building: comfortable and healthy for the occupants and their activity, and provide good air quality. The space conditions in a natatorium need to be precisely maintained in order to maximize human comfort and health as well as preserve building integrity. Relative humidity, air temperature, water temperature and air quality are all key environmental aspects to control. High relative humidity levels are not only a problem to bather comfort and health, but can seriously damage the building structure possibly leading to building component failures. Revenues can also be affected in commercial facilities. Several hotel chains offer a full money-back guarantee should the hotel guest have any complaint regarding their stay.

A properly designed and maintained natatorium delivers years of pleasure. The first step is to become familiar with the design challenges and to understand how to address them. A Natatorium’s overall performance is inversely proportional to the amount of compromises and shortcuts taken in the design and construction of the natatorium.

A Successful Facility. A natatorium is one of the most notoriously difficult facilities to design because there are so many critical considerations that if overlooked develop into problems with the building structure or complaints from the occupants. The designer must take a complete system approach, from basic engineering issues to the more subtle details in the air distribution. Experience and a complete understanding of the design issues help the designer satisfy:

- Comfort and Health
- Humidity Control
- Indoor Air Quality
- Condensation Control

Comfort and Health: Human comfort levels are very sensitive to temperature and relative humidity. It is essential that both are controlled and stable. While temperature control is generally well understood and mastered by designers, it is important to recognize what temperature levels natatorium patrons want. The space temperatures in a natatorium are unique to each project and assumptions must never be made. Fluctuation of relative humidity levels can be an even greater concern because it has a direct effect on human comfort and health. Figure 1 shows that relative humidity levels outside the 40%-60% range can result in increased human susceptibility to disease from bacteria, viruses, fungi and other contaminants that reduce air quality and potentially lead to respiratory problems.

![Figure 1- Relative Humidity Effect on Health Factors](image)

Study by Theodore Sterling Ltd., A. Arundel Research Associates and Simon Fraser University.
The type of facility being designed dictates the space temperature. Table 1 helps target some typical conditions. It is critical to understand who will be using the facility in order to deliver the conditions most likely to satisfy them.

<table>
<thead>
<tr>
<th>Pool Type</th>
<th>Air Temperature, °F</th>
<th>Water Temperature, °F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Competition</td>
<td>78 to 85</td>
<td>76 to 82</td>
</tr>
<tr>
<td>Diving</td>
<td>80 to 85</td>
<td>84 to 88</td>
</tr>
<tr>
<td>Elderly Swimmers</td>
<td>84 to 85</td>
<td>85 to 90</td>
</tr>
<tr>
<td>Hotel</td>
<td>82 to 85</td>
<td>82 to 86</td>
</tr>
<tr>
<td>Physical Therapy</td>
<td>80 to 85</td>
<td>90 to 95</td>
</tr>
<tr>
<td>Recreational</td>
<td>82 to 85</td>
<td>80 to 85</td>
</tr>
<tr>
<td>Whirlpool/spa</td>
<td>80 to 85</td>
<td>102 to 104</td>
</tr>
</tbody>
</table>

Table 1 – Typical Natatorium Operating Conditions

Indoor pools are normally maintained between 50 and 60% RH for two reasons:
- Swimmers leaving the water feel chilly at lower relative humidity levels due to evaporation off the body and:
- It is considerably more expensive (and unnecessary) to maintain 40% RH instead of 50% RH.

General Notes:
- Facilities with warmer water temperatures tend to have warmer space temperatures.
- Physical Therapy facilities will cater to therapist comfort rather than the patient because they are generally not in the space for more than an hour, whereas the therapist is there all day. The designer should consult local codes. Some States require a full purge of the room air with 100% outdoor air for every hour of occupancy.
- Elderly swimmers tend to prefer much warmer air and water temperatures.

Humidity Control: High relative humidity levels inside a building are well known for their destructive effects on building structure and can pose serious health concerns. Buildings with high humidity levels are prone to condensation problems that can destroy the building structure. They also facilitate the growth of mold and mildew, which in addition to being unsightly, can adversely impact the air quality. Controlling humidity requires that a total moisture load be accurately calculated. This amount of moisture must be removed from the space at the same rate it is generated to maintain stable space conditions.

1.1 Packaged mechanical refrigeration system. By far the most common and popular method of removing moisture from the space, these are packaged refrigeration units like those built by Seresco. The units are designed and developed specifically for dehumidifying indoor pools.

A major benefit of this approach is that both the sensible and latent heat is combined with the heat generated by the compressor’s power consumption and can be directed to wherever heat may be required in the natatorium. This process is unique in the HVAC industry as it uses both the cooling and heat rejection sides of the refrigeration cycle. The system can be simultaneously dehumidifying (cooling) the air and then reheating it (and/or the pool water) to deliver dehumidified and reheated air to the space, and warm water to the pool.

How it works. Figure 2 illustrates schematically how warm humid air passes through the dehumidifying coil and is cooled to below its dew point. As a result moisture condenses out of the air. Depending on the space temperature requirements the hot gas from the compressor can be used to reheat the air or reject its heat to an outdoor condenser. Compressor hot gas can also be used to heat the pool water.

![Figure 2 Mechanical Refrigeration System.](image)

Typical Operating Conditions:
- Air On Evaporator: 84°F, 50% RH
- Air Off Evaporator: 50°F
- Suction Pressure: 65 PSIG
- High Pressure: 220 PSIG
- Superheat: 12-15 °F
- Pool Water Heat: in 84°F- out 92°F
1.2 NE Series Dehumidifier Features. Figure 3 identifies where several major components are located within the NE Series unit.

1 - Air Filters. The standard filter is a 2” pleated 30% efficient filter. 4” 95% filters are available on certain models. Access to the filters is through a service access door.

2 - Evaporator. The coil is corrosion protected to ensure a long lifespan and designed to ensure premium dehumidification performance. It is also recessed into the cabinet allowing these units to perform even if the duct connection is less than perfect.

3 - Drain Pan. The drain pan has compound slopes to ensure zero water retention.

4 - Reheat Coil. This corrosion protected condenser coil is capable of rejecting 100% of compressor heat to the air steam.

5 - Blower. Plug fans are standard on all units. The backward inclined airfoil blower wheel provides high static pressure with low motor power. This feature helps ensure the NE unit will perform to specifications even if the duct connections to the unit or if the overall duct installation are less than ideal.

6 - Compressors: The NE Series is equipped with robust high-efficiency scroll compressors.

7 - Direct driven blowers: No belts to adjust or maintain! The motor is even out of the air stream. The NE Series uses Inverter Spike Resistant direct driven blower motors. This blower drive design simplifies unit maintenance and delivers the air more efficiently.

8 - Electrical Panel. All electrical components and connections are inside this panel.

9 - Receiver. The receivers have two sight glasses. This facilitates the system charging process.

10 - Pool Water Heater. This coaxial heat exchanger is provided with the PH and PV models. The water circuit is corrosion resistant cupro-nickel pipe.

11 - Command Center. The Keypad and Display panel has a backlit graphic Liquid Crystal Display (LCD) and 7 system status LEDs.

12 - Evaporator Bypass Damper. The motorized bypass damper is controlled by the Command Center and it is used to ensure the evaporator is always operating at optimum pressures.

13 - Outside Air Opening. Manual air balancing dampers are provided and two-inch air filters.

14 - Cabinet: Seresco has taken all possible commercially feasible precautions to protect the NE Series units against the corrosion. The sheet metal is galvanized automotive grade G-90 with both sides painted.

15 - Refrigerant Pressure transducers. These allow the user or serviceman to access the vital information of refrigerant pressures through the operator panel of the microprocessor rather than having to connect a set of refrigerant manifold gauges. This is the most important operation and diagnostic data for any refrigeration system.
2. Installation

2.1 Uncrating and Inspecting
Seresco inspects and fully tests each dehumidifier in all operating modes before it ships from the factory. The unit can suffer damage in transit. Check the equipment thoroughly for both visible and concealed damage before you sign the receiving papers. Document any damage in writing on the carrier’s bill of lading to ensure that damage claims are handled promptly. If the unit has been damaged, obtain a claim form from the carrier. Promptly fill out and return the form, and notify Seresco of any damage.

Damage claims or missing parts must be filed with the freight carrier.

2.2. Mounting and Service Clearance
The NE Series dehumidifier continuously removes a significant amount of moisture from the room air. Some models have a pool water heating option. Condensate lines and pool water circuits can leak.

Do not install the unit in a location where a water leak will cause damage.

- The mechanical room where the unit is installed should have a floor drain.
- If there is no floor drain, a secondary pan with a drain or condensate pump should be installed under the entire unit. (as is done with a residential washing machine)
- Do not store pool chemicals in the same room as the dehumidifier.

Install the unit on an appropriate mounting base or a platform. Install industry standard components that prevent vibration and sound transmission. Never install the dehumidifier on a wooden platform that can resonate. Do not install the unit near occupied rooms such as bedrooms. Never suspend from the floor joists of an occupied room above the mechanical room. Never locate the unit above a swimming pool or a spa water surface.

- Figures 5 & 6 illustrate typical unit mounting configurations.
- Ensure the support structure will not interfere with the operation of or access to unit.
- **No Access = no service or maintenance.** All NE series units have been designed to require only two sides access.

Looking into the return duct connection allow a minimum of 36 inches of clearance on the right side (with the logo on it) and opposite end of the NE series dehumidifier for piping, duct connections, and service access.
2.3. High Voltage Electrical Connections

The installing contractor must ensure that all electrical wiring satisfies all National, State and Local codes.

2.3.1 Wire and Fuse Sizing
The field-installed power supply wires and over current devices must be sized to handle the minimum ampacity of the dehumidifier without exceeding the maximum fuse size rating. Both the MCA and MOP are indicated on the unit nameplate.

Improper wiring to the dehumidifier could create the possibility of shock and may lead to system failure.

2.3.2 Line Voltage Connections
Figure 7 shows typical power wiring connections. Single-phase units power supply must have 3 wires (2 power, 1 ground). On three phase units the power supply must have 4 wires (3 power, 1 ground). Connect the power supply wires to the main power block located inside the electrical panel.

Always check the nameplate voltage before connecting to the unit.

2.4. Control Wiring
The NE Series dehumidifiers have all necessary sensors unit mounted and set points pre-programmed at the factory. Remote duct heaters, outdoor air-cooled condensers, auxiliary pool water heaters and remote exhaust fans all require interfacing with the dehumidifier. Their connection terminals are identified on page 33.

The microprocessor has been programmed to control their operation. Figure 8 illustrates how an Ethernet connection to the Internet allows all functions to be monitored by trained professionals with Seresco’s Websentry. It is the final step to ensure the facility operates trouble free.
2.5 Controller, Programming and Sensors
The NE Series Command Center (Figure 9) is the brains behind the NE Series Dehumidification System. The Command Center is composed of a microcontroller system, an LCD display and keypad, an Ethernet interface, and WebSentry – a web browser based remote interface tool for monitoring and controlling NE Series systems from anywhere in the world via the internet.

The keyboard/display panel is shown in Figure 9 and is located on the NE Series unit at the mechanical compartment access. The LCD display has a built-in backlight for easy reading in low light conditions.

The keys have the following functions:
- 1, 2, 3: Correspond to numbered selections (menu items and parameters) on the screen (eg. 1-Menu, press 1 for the main menu)
- 4, 5, 6: Allows you to return to the previous menu or cancel a parameter change.
- Back: Used for viewing additional menus, alarms or operating data and for changing parameters on the screen such as setpoints.
- : Allows viewing additional menus, alarms or operating data and for changing parameters on the screen such as setpoints.
- Enter: Press to save changes to parameters and (optionally) press again to return to the main sensor screen.

There are 7 LEDs as shown and their function is as follows:
- Alarm: Solid Red indicates an active alarm (that has not yet been cleared). A flashing red indicates an alarm that has not been acknowledged yet.
- Dehum: Solid Green indicates system is in dehumidification mode. Compressor will run when anti-short cycle timer is satisfied.
- A/C: Solid Green indicates system is in air-conditioning mode. Compressor will run when anti-short cycle timer is satisfied.
- Pool: Solid Green indicates that pool heating is on. If Dehum or A/C is also on, then heating is by the NE Series unit. If Dehum and A/C are off, auxiliary heating is energized.
- Heat: Solid Green indicates that the auxiliary air heating system is on.
- Filter: Solid Yellow indicates that the air filters are dirty and need changing (optional only).
- Service: Solid Yellow indicates that the NE Series unit is in Service Mode. Flashing Yellow indicates that the blower or compressor have been manually disabled (when not in Service Mode).

There are two main modes of operation for the NE Series Units: “Normal Mode” and “Service Mode”. In normal mode, the user can view sensor information, view unit operating status, change setpoints (password protected), adjust the occupied/unoccupied schedule (password protected), and view alarms and warnings. The system operates automatically.

In Service Mode, the trained technician has access to special features to aid in system commissioning and troubleshooting, including Ethernet network access test utilities. The system operates under manual control.
2.5.1 Normal Mode:
Menus and selections are accessed using the “1-6” numbered keys – each menu item and parameter is preceded by a number from 1 to 6. When the scroll keys can be used to access additional menu items they will appear on the screen (↓ and ↑). The same scroll keys are used to change values after a parameter has been selected.

A User Password is required to view/change setpoints and schedules. Passwords are 3 digits long, and entry is done using the scroll keys (↓ and ↑) to change the 1st digit to the correct password value – then press Enter to accept that digit and move on to the 2nd digit, repeat for the 3rd digit. The User password is supplied to the customer under separate cover.

From the main screen, which shows sensor readings, press 1 (-Menu) to open the main menu structure below. From any menu level, the Back button will return to the previous menu level without making any changes. Note that some menu items are only visible if the unit has been configured with that option:

<table>
<thead>
<tr>
<th>Setpoint</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>Room temperature setpoint</td>
</tr>
<tr>
<td>Humidity</td>
<td>Room relative humidity setpoint</td>
</tr>
<tr>
<td>Pool Temp</td>
<td>Pool water temperature setpoint</td>
</tr>
<tr>
<td>Economizer</td>
<td>Outdoor air temperature below which economizer not used</td>
</tr>
<tr>
<td>Freezestat</td>
<td>Supply air temperature below which Freezestat alarm trips</td>
</tr>
<tr>
<td>Purge</td>
<td>Supply air temperature below which Purge will stop</td>
</tr>
<tr>
<td>Heat Recovery</td>
<td>Outdoor air temperature below which heat recovery starts</td>
</tr>
<tr>
<td>Schedule</td>
<td>Sets occupied/unoccupied state for ventilation control</td>
</tr>
<tr>
<td>Time Slot 1-6</td>
<td>There are 6 available time slots that can be established</td>
</tr>
<tr>
<td>Weekday</td>
<td>None/All/Weekday/Weekend/Monday to Sunday selection</td>
</tr>
<tr>
<td>On</td>
<td>Time at which occupied status and ventilation begins</td>
</tr>
<tr>
<td>Off</td>
<td>Time at which unoccupied status begins, ventilation stops</td>
</tr>
<tr>
<td>System</td>
<td>Enabling/disabling blower and compressor operation</td>
</tr>
<tr>
<td>Blower/Compressor</td>
<td>Starts/stops purge 100% ventilation operation</td>
</tr>
<tr>
<td>Purge</td>
<td>Manual reset</td>
</tr>
<tr>
<td>Alarm Log</td>
<td>View Alarms</td>
</tr>
<tr>
<td>System Status</td>
<td>See Section 2.5.4</td>
</tr>
<tr>
<td>System Summary</td>
<td>Summary of system configurations</td>
</tr>
<tr>
<td>User Settings</td>
<td>Turn backlight on or off</td>
</tr>
<tr>
<td>Display</td>
<td>Idle time before display reverts to the main sensor screen</td>
</tr>
<tr>
<td>Backlight</td>
<td>Time for which short information messages remain visible</td>
</tr>
<tr>
<td>Reset Display</td>
<td>Time for which long information messages remain visible</td>
</tr>
<tr>
<td>Short Message</td>
<td>System Clock</td>
</tr>
<tr>
<td>Date</td>
<td>Set the date</td>
</tr>
<tr>
<td>Time</td>
<td>Set the time</td>
</tr>
<tr>
<td>Zone</td>
<td>Set the time zone</td>
</tr>
<tr>
<td>Daylight</td>
<td>Set daylight savings on or off manually</td>
</tr>
<tr>
<td>Date Format</td>
<td>Format the date on the screen</td>
</tr>
<tr>
<td>Time Format</td>
<td>Format the time on the screen</td>
</tr>
<tr>
<td>Synch</td>
<td>Synchronize with internet time server (when connected)</td>
</tr>
<tr>
<td>User Password</td>
<td>Enable/disable user password control</td>
</tr>
<tr>
<td>Enabled</td>
<td>Change user password</td>
</tr>
<tr>
<td>Password</td>
<td>Set time for which password entry remains valid</td>
</tr>
<tr>
<td>Retention</td>
<td>System Mode</td>
</tr>
</tbody>
</table>

Figure 10 Command Center Quick Menu
2.5.2 Service Mode

From the Startup Menu there is a Service Mode available for factory trained service technicians. Please contact factory for additional information.

2.5.3 Logs

The CommandCenter logs alarm messages which can be accessed from the LCD/Keypad.

Alarm messages are as follows:

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HP# -NN</td>
<td>High pressure trip (# indicates compressor, NN can be SW or TD indicating switch or transducer alarm)</td>
</tr>
<tr>
<td>LP# -NN</td>
<td>Low pressure trip (# indicates compressor, NN can be SW or TD indicating switch or transducer alarm)</td>
</tr>
<tr>
<td>Blower OL</td>
<td>Blower overload trip</td>
</tr>
<tr>
<td>No Air</td>
<td>Airflow alarm, air pressure switch (optional) reading too low air pressure differential</td>
</tr>
<tr>
<td>Fire</td>
<td>Firestat signal active</td>
</tr>
<tr>
<td>Waterflow</td>
<td>Low water flow, controls have detected pool water out temperature is too high</td>
</tr>
<tr>
<td>Filter</td>
<td>Dirty filter, filter switch (optional) reading a high pressure differential</td>
</tr>
<tr>
<td>Pumpdown</td>
<td>Compressor pumpdown timed out (no LP switch detected)</td>
</tr>
<tr>
<td>Freeze</td>
<td>Freezestat</td>
</tr>
<tr>
<td>Purge</td>
<td>Supply air too cold during purge, purge shut down</td>
</tr>
<tr>
<td>Volt Mon</td>
<td>Voltage monitor</td>
</tr>
<tr>
<td>Oil #</td>
<td>Oil failure (# indicates compressor)</td>
</tr>
<tr>
<td>No Config</td>
<td>System not configured at startup (only needs to be done once)</td>
</tr>
<tr>
<td>Restart</td>
<td>Manual Reset required to start normal operation</td>
</tr>
<tr>
<td>SW Error</td>
<td>System has detected an internal error – contact factory</td>
</tr>
<tr>
<td>CompPower</td>
<td>Indicates that compressor has been manually disabled through an external switch for an extended period of time</td>
</tr>
<tr>
<td>SensorNNN</td>
<td>Indicates sensor fault where NNN identifies the sensor</td>
</tr>
</tbody>
</table>

2.5.4 System Status

The CommandCenter has a feature which will provide more detailed information about the internal operation of the system, which can assist an owner or service technician in understanding his NE Series unit is doing at any given moment.

This feature is accessed through the menu system at /Main Menu/System/System Status.

The various system elements are broken into three main groups:

<table>
<thead>
<tr>
<th>Group</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environment</td>
<td>Related to air relative humidity and temperature control, pool heating control</td>
</tr>
<tr>
<td>Compressor</td>
<td>Related to the operation of the compressors</td>
</tr>
<tr>
<td>Other</td>
<td>Related to miscellaneous system operations</td>
</tr>
</tbody>
</table>

Selecting the Compressor elements takes you to a screen showing the compressor status, and also which solenoid valves and contactors are energized. The solenoid valves and contactors are coded as follows:

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PW</td>
<td>Compressor contactor</td>
</tr>
<tr>
<td>PD</td>
<td>Pumpdown valve</td>
</tr>
<tr>
<td>DH</td>
<td>Dehumidification (reheat) valve</td>
</tr>
<tr>
<td>AC</td>
<td>Air conditioning valve</td>
</tr>
<tr>
<td>PH</td>
<td>Pool water heating valve</td>
</tr>
<tr>
<td>PB</td>
<td>Pool water heating bypass valve</td>
</tr>
</tbody>
</table>
2.5.5 Sensors and location.
Figures 11 & 12 identify where the sensors are located in the NE Series units. Each sensor is accessible through the Command Center or Web Sentry. Sensor history is stored and can be reviewed in tabular form.
All Sensors can be calibrated in service mode.

Sensors:
- Room air temperature
- Room air humidity
- Pool water entering temperature
- Pool water leaving temperature
- Outside air temperature
- Air temperature leaving the evaporator
- Supply air temperature
- Compressor hot gas discharge temperature
- Compressor suction gas temperature

Refrigerant Pressure Transducers:
- Refrigerant High pressure
- Refrigerant Suction pressure

These allow the user or serviceman to access the vital refrigerant pressures through the operator panel of the microprocessor rather than having to connect a set of refrigerant manifold gauges.
2.6. System Design Checklist. Ensuring that all critical system design aspects have been addressed is paramount to obtaining a safe and healthy pool environment. Seresco’s name is a useful checklist.

- System duct design and air pattern
- Evaporation rate and latent loads
- Required Access Space
- Exhaust Air
- Supply Air flow
- Cooling and Heating loads
- Outdoor Air

2.6.1 System Duct Design and Air Pattern
The overall duct design will determine whether or not the space will be comfortable and condensation free. Special care must be taken to ensure the entire room sees the required air changes per hour and that all exterior windows have air delivered to them. Stagnant areas, especially where occupants can access (the deck area for example) will suffer from poor air quality and lead to complaints.

Traditional problems in indoor pools are easily predictable and can be avoided by following to models provided here. Figures 13 & 14 illustrate good air distribution practices and layouts.

All air distribution systems should:
- Supply 4-6 volumetric air changes per hour.
- Blanket exterior windows, exterior surfaces prone and other areas prone to condensation with supply air. A good rule of thumb is 3 - 5 CFM per ft² of exterior glass.
- Locate the return grille to enhance the overall air pattern within the room.
- Prevent air short-circuiting. Avoid installing the return air grille too close to a supply grille.
- Select grilles, registers and diffusers that deliver the required throw distance, and the specified CFM rating.
- Introduced outdoor air per local codes and/or ASHRAE Standards
- Maintain a negative pressure in the space with an exhaust fan.
General Recommendations:

- Galvanized sheet metal ducts are acceptable in most installations. A below-grade duct system should use PVC or plastic-coated galvanized spiral pipe to avoid deterioration.
- Ductwork that passes through an unconditioned area should be insulated on the exterior.
- When applicable, locate exhaust fan air intakes as close to the whirlpool as possible.
- To prevent excessive vibration noise, install neoprene flex connectors when attaching ductwork to the dehumidifier.
- Skylights require significant airflow to avoid condensation on their surfaces.

2.6.2 Evaporation and Latent Loads

Every building’s moisture (latent) load is calculated in the same way. There are generally three sources of moisture that are considered:

- Internal load; evaporation rate
- Occupants
- Outdoor air load

It is important to be aware of the design criteria used to calculate the total load and reconcile a unit selection. Seresco’s Natatorium Design Manual has more information on this subject.

2.6.3 Required Access Space

Access Space

No Access = no service or maintenance.

All NE series dehumidifiers have been designed to require only two sides access. Allow a minimum of 36 inches of clearance on the sides indicated in Figure 15 for piping and service access. Mirror access units are also available.

Figure 15 – Recommended Access Space
2.6.4 Exhaust Air. ASHRAE recommends the room be maintained at 0.05-0.15” WC negative pressure relative to surrounding spaces.

Ten percent more exhaust air than outdoor air is a good rule of thumb.

Figure 16 illustrates how the location of the exhaust fan can also significantly improve the air quality in the space. A spa or whirlpool should have the exhaust air intake grille located directly above it. This extracts the highest concentration of pollutants before it can diffuse into the space and negatively impact the room air quality.

2.6.5 Supply Air. ASHRAE recommendations for proper volumetric air changes per hour are important to ensuring that an entire room will see air movement. Stagnant areas must be avoided, as they will be prone to condensation and air quality problems.

Short-circuiting between supply and return air must also be avoided as it significantly reduces the actual air changes within the space.

ASHRAE recommends:
- 4-6 volumetric air changes per hour in a regular natatorium.
- 6-8 volumetric air changes per hour in facilities with spectators

A quick calculation will determine the supply air requirement. Nominal air flows from NE series units are summarized in Table 3.

Supply air required (CFM) = \[\text{room volume (ft}^3\text{)} \times \text{desired air changes}\] / 60

<table>
<thead>
<tr>
<th>Model</th>
<th>1.0” ESP</th>
</tr>
</thead>
<tbody>
<tr>
<td>004</td>
<td>2000</td>
</tr>
<tr>
<td>005</td>
<td>2500</td>
</tr>
<tr>
<td>006</td>
<td>3000</td>
</tr>
<tr>
<td>007</td>
<td>3400</td>
</tr>
<tr>
<td>008</td>
<td>3800</td>
</tr>
<tr>
<td>010</td>
<td>4600</td>
</tr>
<tr>
<td>012</td>
<td>5600</td>
</tr>
<tr>
<td>014</td>
<td>6400</td>
</tr>
</tbody>
</table>

Table 3. Nominal Air Flow Rates (CFM)

2.6.6 Cooling and Heating Loads. All buildings should have cooling and heating load calculations done to determine their specific requirements. The room air temperature of an indoor pool facility is generally 10-15 ºF warmer than a typical occupied space. Therefore, the heating requirement is larger than a traditional room and the cooling needs are less.

- Rules of thumb do not apply. This is a unique space that requires accurate load calculations.
- Outdoor air must be included in load calculations as it often represents up to 50% of the heating load.

Space cooling is a free byproduct from packaged dehumidifiers. These systems dehumidify by cooling the air below its dew point. The compressor heat can be used to heat the pool water during this time or merely sent outdoors to a condenser as is done with traditional air conditioning systems. If the cooling load exceeds the standard output of a dehumidification unit, a larger unit with compressor staging is often specified.

2.6.7 Outdoor Air. The introduction of outdoor air is essential to maintaining good air quality in any facility. The impact of outdoor air ventilation on a natatorium changes with the weather. Introducing outdoor air during the summer adds moisture to the space and in the winter removes moisture from the space. For maximum dehumidification load calculation the Summer Design conditions are considered.

Ventilation codes generally require that outdoor air be introduced into a commercial building during occupied hours. ASHRAE Standard 62-1999 recommends the introduction of outdoor air into a natatorium at the following rates:

- 0.5 CFM/ft² of pool and (wet) deck area
- 15 CFM per spectator

Most designers use the larger of the two values.

Seresco suggests that only the wet deck (a 5-6’ perimeter) be considered in this calculation, as the purpose of this outdoor air is to help dilute chemicals off-gassed from water. A predictably
dry portion of the deck will not factor into the IAQ issues.

The NE Series units have an outdoor air opening with a filter and manual balancing damper. Optional unit mounted motorized dampers and time clocks are available. Figure 17 illustrates a typical connection configuration.

2.7. Condensate Drain. The dehumidifier is a draw through configuration as a result the entire cabinet is under negative pressure. Without a trap, condensate will not drain and the unit will overflow into your mechanical room.

- Per Figure 18 pitch the condensate drain line a minimum of 1/8” per linear foot, and support the pipe with code-approved hangers at least every 5 feet.
- If the drain line passes through an unconditioned space, heat tracing is required to prevent the condensate in the drain from freezing.
- When gravity disposal is not possible, a condensate pump can be used. Follow the pump manufacturer’s installation instructions.

2.8. Pool Water Heating (PH and PV Models Only). The energy a pool loses through evaporation represents approximately 90% of its annual water-heating requirement. The Seresco unit captures 100% of this heat as a byproduct of the dehumidification process and can return this energy back to the pool, thereby greatly reducing pool water heating costs. During the cooling season the dehumidifier is capable of providing 100% of the pool’s water-heating requirement. Refer to Figure 18 for proper pool water piping connections to the NE Series unit.

2.8.1 Water Piping Connections. The NE unit requires only a fraction of the total water being circulated by the main filter system. Refer to Table 4 or the unit nameplate for nominal water flow rates.

- The water circuit should tap off the main pool water line downstream of the main filter and upstream of the auxiliary pool water heater and chemical feeder.
- Install an auxiliary water pump to deliver the unit’s required water flow. It is an open system and the pool’s main circulating pump can rarely accommodate additional system pressure.
- All systems require auxiliary pool water heaters. The Seresco unit will control their operation when it is not able to provide water heating.

Max Water Flow Rates (GPM) & Pressure Drop (PSI)

<table>
<thead>
<tr>
<th>Model</th>
<th>GPM</th>
<th>PSI</th>
</tr>
</thead>
<tbody>
<tr>
<td>004</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>005</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>006</td>
<td>12</td>
<td>5</td>
</tr>
<tr>
<td>007</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>008</td>
<td>16</td>
<td>4</td>
</tr>
<tr>
<td>010</td>
<td>18</td>
<td>6</td>
</tr>
<tr>
<td>012</td>
<td>22</td>
<td>6</td>
</tr>
<tr>
<td>014</td>
<td>25</td>
<td>6</td>
</tr>
</tbody>
</table>

Table 4. Unit GPM Schedule
Figure 19 – Proper Pool Water Piping Installation
2.9. Outdoor Air Cooled Condenser Installation.

This condenser is used in air conditioning mode where it rejects unneeded heat from the space to outdoors. Proper installation is essential to ensure it can function as intended. Proper airflow and refrigerant piping are paramount.

- Ensure an appropriate maximum ambient air temperature has been specified.
- Ensure the unit has proper airflow per Figure 20. A perimeter of free area equal to its width must be provided.
- Use line sizes as specified by Seresco.
- To avoid potential seasonal system charge problems, ensure the installed line lengths are never longer than indicated on the plans and specifications.
- If the condenser is installed above the dehumidifier, ensure the hot gas line has proper oil traps.
- Contact Seresco if the condenser is installed more than eight (8) feet below the dehumidifier.
- The installer must endeavor to ensure that all industry standards for refrigeration component installation are met. This includes but is not limited to; proper line sizing, materials, nitrogen purging, brazing with Silfos 5 or better (NO SOFT SOLDER), evacuation, cleanliness, traps, long radius elbows and system charging.
- Install the remote condenser on a level, hard surface.

2.9.1 Refrigerant Piping of Remote Condensers

1. NE series dehumidifiers are equipped with isolation valves and access valves located in the blower compartment. **Do not open the isolation valves until all exterior piping is leak checked and evacuated.** The last outdoor condenser vacuum can be broken with liquid R-22. Monitor the exact amount of R-22 added, as the total system charge must be per the unit nameplate.
2. NE series dehumidifiers have refrigerant pipe stubs for the line set connection inside the cabinet.
3. Use standard commercial refrigeration piping practices when installing the refrigeration piping between the dehumidifier and the remote air-cooled condenser.
 - Hot Gas and Liquid line sizes should be per unit nameplate. The stubs inside the NE unit will be the correct sizes for line lengths up to 50’.

![Figure 20 – Typical Outdoor Condenser Installation](image)

- Do not exceed 50’ total line length or install the condenser more than 8’ below the NE unit.
- Per figure 21, install an oil trap at the start of and at every 15 feet of vertical lift in the hot gas discharge line as shown in Figure 18. Pitch horizontal lines a minimum of 1/2” every 5 feet in the direction of flow. All piping must be clean and de-burred. Keep copper chips and foreign materials out of the tubing. A nitrogen purge while brazing is paramount to reduce the chances of oxidation in the pipes.
- Keep the Hot Gas and Liquid lines a minimum of 2” apart to prevent heat transfer. Insulate the hot gas line in all areas where a person may come in contact with the line and be in danger of a burn.
- When all piping work is complete, check for leaks by pressurizing the remote condenser and line set with dry nitrogen. If no leaks are detected, the circuit is ready to be evacuated. Evacuate the condenser and piping to a minimum 250 microns. Isolate the piping for ONE HOUR to verify that the system is free from leaks, moisture, and non-condensables.

Consult Seresco before installing the outdoor air-cooled condenser more than 8 feet below or more than 50 feet away from the dehumidifier.
Figure 21 – Typical Outdoor Condenser Installation

2.9.2 Charging of Remote Condensers
Once a proper evacuation has been accomplished the system is ready for charging. The outdoor air-cooled condenser requires a field charge by the installing contractor. The field charge required depends on the size of the condenser and the length of the piping. The unit nameplate will show the exact field charge required. Refer to Table 5 to determine the necessary charge for your application.

1. The last vacuum can be broken with liquid R-22. Monitor the exact amount of R-22 added, as the total system charge must be per the unit nameplate.
2. Connect the control wiring to the terminals provided inside the electrical compartment of the dehumidifier and outdoor condenser. Refer to the low voltage wiring schematic for details. The condenser fan(s) will not operate until this is complete.
3. Once you have charged and checked the condenser and line set for leaks, open the service valves located in the compressor compartment of the dehumidifier.

<table>
<thead>
<tr>
<th>NE Model</th>
<th>Factory Charge (Lbs)</th>
<th>50’ line contractor charge (Lbs)</th>
<th>Factory Oil Charge (Oz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>004</td>
<td>25</td>
<td>17</td>
<td>9</td>
</tr>
<tr>
<td>005</td>
<td>27</td>
<td>28</td>
<td>12</td>
</tr>
<tr>
<td>006</td>
<td>27</td>
<td>29</td>
<td>12</td>
</tr>
<tr>
<td>007</td>
<td>28</td>
<td>32</td>
<td>14</td>
</tr>
<tr>
<td>008</td>
<td>44</td>
<td>32</td>
<td>15</td>
</tr>
<tr>
<td>010</td>
<td>48</td>
<td>48</td>
<td>20</td>
</tr>
<tr>
<td>012</td>
<td>51</td>
<td>62</td>
<td>29</td>
</tr>
<tr>
<td>014</td>
<td>61</td>
<td>77</td>
<td>35</td>
</tr>
</tbody>
</table>

Table 5 - R-22 and Oil Charges
4. There is an access valve in the liquid line after the pump down valve. The pump down valve can be manually closed during start-up mode via the controller. Add only as much refrigerant as is needed to get to the total charge indicated on the nameplate. Never charge liquid into the suction line access valve!
5. The receiver has 2 sight glasses with float balls to help ensure the maximum and minimum refrigerant levels are easily met.

3.0 Pool Water Chemistry. Pool water quality directly affects space air quality, lifespan and performance of the mechanical equipment.

Poor water chemistry is the single biggest cause of indoor air quality (IAQ) and corrosion problems in a Natatorium.

Table 6 shows the National Spa and Pool Institute recommended levels for water quality.

3.1 Chlorine smell in the pool area.

The chlorine smell that is often associated with indoor pools is not actually the smell of excess chlorine in the water but of that of off-gassed Combined Chlorines. Combined Chlorines are a product of insufficient free chlorine and can result in high levels of bacteria and algae in the pool water. Maintaining proper free chlorine levels will help eliminate the foul odors.

The proper amount of outdoor air and exhaust air to and from the space is also crucial to ensuring chemical concentration levels are maintained within acceptable levels.

The powerful chlorine smell that is often associated with indoor pools is NOT the result of too much free chlorine in the water; it is TOO LITTLE free chlorine that is the culprit!

3.2 Filtration.

Elevated concentrations of biological waste and dissolved solids in water have been shown to directly contribute to high combined chlorine (chloramine) levels. It is important to provide adequate water exchange rates as well as proper treatment and filtration to prevent any build up of these undesirable components.

3.3 pH Level.

High pH allows for scale formation, which reduces pool water heater efficiency. Low pH levels (acidic) are corrosive and may damage the metal parts in pumps, water heaters and piping. Maintaining pH levels between 7.2 and 7.6 are vital for the longest possible life for the pool equipment.

Table 6 lists the NSPI recommended levels of each.

<table>
<thead>
<tr>
<th></th>
<th>Pools</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>7.4 – 7.6</td>
</tr>
<tr>
<td>Alkalinity</td>
<td>80 – 100 PPM</td>
</tr>
<tr>
<td>Free Chlorine</td>
<td>2.0 – 3.0 PPM</td>
</tr>
<tr>
<td>Combined Chlorine</td>
<td>0 PPM</td>
</tr>
<tr>
<td>Dissolved Solids</td>
<td>100 – 300 PPM</td>
</tr>
<tr>
<td>Total Hardness</td>
<td>225 – 250 PPM</td>
</tr>
</tbody>
</table>

3.4 Corrosion.

The deterioration of the pool building and equipment can result from poor water chemistry. A well balanced pool with proper water treatment and sufficient outdoor air/exhaust air dilution offers an environment that will not affect the health of the users or cause damage to mechanical equipment or the structure.

Local codes generally require a separate, ventilated space MUST be provided to store pool chemicals.

DO NOT STORE POOL CHEMICALS IN THE MECHANICAL EQUIPMENT ROOM!

Seresco has taken all possible commercially feasible precautions to protect the NE Series units against the corrosion caused by accidentally high chemical levels. The equipment, materials and paints are all resistant to airborne chemicals for a short period of time.
4. Start-up Procedures

4.1. Pre Start-up

A complete start-up is required to ensure all systems have been setup and adjusted to ensure optimum and reliable unit operation. The final adjustment and balancing must be done when all space and water temperatures are at design conditions. The use of auxiliary or portable air heaters may be required to heat the room. Read this section thoroughly before attempting to commission the Seresco dehumidifier.

NOTE: Do not use the unit as a construction site heater. Construction dirt will invade the unit and can significantly deteriorate unit performance and lifespan.

1. Ensure the unit installation conforms to all recommendations made by Seresco in this manual.
2. Check to ensure all packing materials and shipping brackets have been removed from the unit.
3. Leak test (with halogen leak detector) all factory and field piping. Shipping and handling may have caused refrigerant leaks inside the dehumidifier.
4. Check the nameplate for power requirements and confirm that it matches the available power supply.
5. Voltage must be within ±10% of the voltage printed on the nameplate. Verify that all field wiring matches the Seresco wiring schematics. Inspect and tighten all field and factory wiring.
6. Leave power on and allow 24 hours of crankcase heater operation before attempting the start-up.
7. Check the drain pan and the condensate piping. Test the drain and prime the P-trap by pouring water into the drain pan.
8. Verify that any space heating coil is installed in the supply air duct (after the evaporator coil) and not in the return duct.
9. PV or PH models have a pool water heater. Energize the circulating pump and establish water flow. Inspect the piping and repair any water leaks. Ensure the control wiring has been installed between the unit and auxiliary pool water heater.
10. Ensure the control wiring has been installed to the outdoor air-cooled condenser.
11. Ensure all peripheral controls and sensors are connected and wired correctly.
12. Verify that all service valves in the refrigeration lines are fully open.
13. Inspect the air filters and coils to assure they are clean. If necessary, clean the coils and install new air filters.
14. Verify that the unit has appropriate vibration isolators and that the unit is level.
15. Complete the Pre Start-up checklist section of the Warranty Registration/Start-up Form (copy provided with the unit and on page 34 of this manual).

4.2. Start-up Procedure

All appropriate fields and sections of the Warranty Registration and Start-up report should be completed. A proper start-up requires that the unit be run and monitored in all modes of operation at design conditions with the operating data recorded on the forms provided in the annex of this manual. Seresco reviews every report to ensure all aspects of the system are functioning within normal operating parameters. Carefully follow the process detailed in the start-up report.

If the space is not at design conditions at the time of the start-up, a follow up visit for final adjust and balance is required.

Mail or fax the completed start-up report back to Seresco to validate your unit’s warranty. Seresco will archive it for future reference. If you do not have a start-up report, call the Seresco for a new copy or download a PDF version from www.seresco.net.
4.3. System Operation Modes

The standard sequence of operation for a Seresco dehumidifier is relatively simple. Whenever the compressor operates the evaporator coil is active where it absorbs heat from the warm, humid air stream. The cooling process at the evaporator coil drops the air well below its dew point and thereby dehumidifies the air.

- Whenever the compressor operates the evaporator is always dehumidifying and cooling the return air.

The heat removed from the air at the evaporator (plus the heat of compression) must be rejected to one of three heat sinks; room air, pool water (PH AND PV models) or outdoors (remote condenser/Dry cooler/cooling tower). The microprocessor will direct the heat to where it is needed based on the room conditions.

In the case of PH AND PV models with remote condensers, if both the water and the air require heat, the dehumidifier heats the air first. If neither the water nor the air require heat, then the dehumidifier rejects the heat to the Air conditioning condenser.

4.3.1 Power turned ON (or after power failure)

- Microprocessor self test and system diagnostics begins. If all systems are a go, the microprocessor will use sensor feedback to resume normal unit operation.
- Blower begins to operate after a 60 sec initial delay and then runs continuously.
- Microprocessor confirms with internal real time-clock and operation log that compressor has been off for 5 minutes.

4.3.2 Dehumidification Mode

This mode occurs when the space requires dehumidification. The air discharged from the unit is dehumidified and about 15°F cooler than when it entered.

- The return air temperature is above setpoint.
- The compressor starts if not already operating in dehumidification mode.
- The evaporator sees nominal airflow.
- The compressor hot gas condenses at the outdoor air-cooled condenser.

4.3.3 Air Conditioning Mode.

When the room air requires cooling only, the NE unit will direct 100% the refrigerant hot gas heat outdoors. The air discharged from the unit is dehumidified and about 15°F cooler than when it entered.

Air Conditioning Mode Stage 1

- The return air temperature is above setpoint.
- The compressor starts if not already operating in dehumidification mode.
- The evaporator sees nominal airflow.
- The compressor hot gas condenses at the outdoor air-cooled condenser.

Air Conditioning Mode Stage 2

- The return air temperature has been significantly above setpoint for an extended period of time.
- The compressor starts if not already operating in Stage 1 AC or dehumidification mode.
- The evaporator bypass damper closes for maximum airflow across the coil.
- The compressor hot gas condenses at the outdoor air-cooled condenser.

4.3.4 Pool Water Heating Mode (PH AND PV Models Only)

If the unit is in dehumidification or air conditioning mode then there is free heat available from the dehumidifier.

- The pool water temperature drops below setpoint.
- Water heating demand alone will not start the compressor. There must be a pre-existing demand to operate. If the compressor is already operating:
 - The pool water control valve directs hot refrigerant flow through the heat exchanger.
 - The heat exchanger rejects heat to the pool water. Operating in pool water heating mode increases system capacity and efficiency.
- If there is no other demand requiring compressor operation the microprocessor sends an on/off signal to the external auxiliary pool water heater (by others). If the auxiliary pool water heater has a separate controller, ensure the set point is set lower or equal to pool water setpoint on the NE control panel.

4.3.5 Blower Operation

Units have been factory wired for continuous blower operation. This helps prevent air stagnation and stratification. Continuous blower operation is also required to ensure that the sensors read conditions representative of the entire Natatorium.
4.3.6 Compressor Start Sequence
All NE units have a pump down sequence and anti-short cycle timer. When a demand requires the compressor to operate the following sequence occurs:
- Blower operation confirmed by microprocessor and ASCT sequence completed.
- Pump down solenoid opens.
- 50 psig will close the low pressure safety switch contact.
- Compressor starts.

4.3.7 Space Heat Demand (Unit Mounted or remote)
The Seresco unit’s microprocessor is designed to control a space-heating coil (unit mounted or remote). When the room temperature drops below the set point the microprocessor will send a signal to the heating coil’s control mechanism.

5. Service and Maintenance
The NE unit is a piece of mechanical equipment, which requires routine maintenance and service. The service required is nothing more than a traditional commercial air conditioner. If a problem is encountered, refer to the TROUBLESHOOTING GUIDE in Section 6.2.

If all suggestions in the “Trouble shooting guide” have been exhausted, call Seresco’s service department. Be sure to have the Model and Serial number when you call.

1-888-SERESCO (737-3726)
If the unit has been ordered with the internet connection capabilities, Seresco or the local factory representative can directly access the unit and diagnose the problem from their facility.

5.1 Routine Maintenance
Seresco dehumidifiers are designed for years of reliable service. In order to ensure this, they require periodic maintenance.

5.1.1 Monthly Service
- Check the air filters and replace them if necessary.
- Check all water connections for leaks and ensure all hose clamps are tight.

5.1.2 Annual Service
- Tighten all field and factory electrical connections.
- Verify that the coils in the dehumidifier and the remote outdoor air-cooled condenser or dry cooler are clean. Use compressed air or a commercial coil cleanser if they are dirty.
- Verify that the airflow around the remote condenser or dry cooler remains unobstructed.
- Check drainpan and clean out any residue that may have accumulated.
- Conduct a complete system check up. This requires the service technician to fill out page #2 of the Warranty Registration and Start-up Report. A copy of this worksheet is located on page 34. This form is a valuable maintenance tool, which can help to uncover problems before they get expensive.

5.2 Compressor Replacement
Compressor failures can be caused by: liquid slugging, air or moisture in the refrigerant circuit, solid contaminants, excessive heat or electrical service malfunctions. To avoid repeated failures, the cause of the failure must be determined and then corrected. If the compressor has failed because its’ motor has burned out, the refrigerant, oil, and piping is contaminated. The procedure in section 5.2.1 should be followed to replace the compressor and clean the refrigerant system.

All acid must be removed from the system to avoid future burnouts.

If the unit has been ordered with the internet connection capabilities, Seresco or the local factory representative can directly access the unit and diagnose the problem from their facility.

5.2.1 Compressor Burnouts
If the compressor has failed due to a burnout, the entire refrigerant charge has been contaminated. In the service mode, all solenoid valves can be opened in order to evacuate the circuit completely. On systems equipped with an optional pool water condenser, take care to avoid freezing the condenser during evacuation.
• Verify that the TX Valve and solenoid valves are free of debris. Clean or replace them as necessary.
• Replace the suction filter with a suction line filter-drier designed specifically for cleaning system burnouts (Sporlan “HH” series or equivalent). Select filters that are equipped with a tap for measuring the pressure drop across the filter. Remove the old liquid line filter-drier and replace it with a new filter one size larger than the original.
• Remove the old compressor if you have not already done so. Install the new compressor.
• Evacuate the system to 250 microns or lower.
• Replace all compressor contactors, start capacitors, run capacitors, and starting relays.
• Check the piping and joints for leaks, and recharge the system.
• Operate the unit for an hour in all modes. (The duct heater may have to operate to maintain the space temperature while operating in air conditioning mode. Contact Seresco for instructions.)

It is critical that the unit be run in AC mode for cleaning system burnouts. The entire system must clean and acid free.

• Monitor the pressure drop across the suction filter. If the pressure drop is 3 psi or less after one hour, continue to run the system for 24 hours, then take an oil sample. If the oil sample is dirty or acidic, or if the one-hour pressure drop is greater than 3 psi, then recover the system charge and replace both the suction and liquid filter-dryers.
• Repeat the previous step until your oil sample tests negative.

Seresco will require a copy of the acid test result if there is a warranty replacement request.

6. Service References

6.1. Nameplate/Factory Label. The unit nameplate (Figure 24) and is attached to the outside of the electrical box door. You will require the rating plate information when you install and service the dehumidifier.

The serial number will be required should you ever require information to a specific unit.

Figure 24 – Unit Nameplate/Factory Label
6.2. Mechanical System Troubleshooting

<table>
<thead>
<tr>
<th>Issue</th>
<th>Possible Cause</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply blower will not start</td>
<td>Firestat contact closure</td>
<td>Check firestat switch</td>
</tr>
<tr>
<td></td>
<td>Loss of main power</td>
<td>Check for tripped circuit breaker or blown fuses</td>
</tr>
<tr>
<td></td>
<td>Manually shut down on controller</td>
<td>Restart</td>
</tr>
<tr>
<td></td>
<td>Faulty control wiring</td>
<td>Check for loose or incorrect wires on system and controller</td>
</tr>
<tr>
<td></td>
<td>Faulty wiring</td>
<td>Check for loose or faulty wiring on system and controller</td>
</tr>
<tr>
<td></td>
<td>Motor windings have shorted</td>
<td>Replace motor</td>
</tr>
<tr>
<td></td>
<td>Blower overload has tripped</td>
<td>reset overload</td>
</tr>
<tr>
<td>Compressor will not start</td>
<td>Manually shut down on controller</td>
<td>Restart</td>
</tr>
<tr>
<td></td>
<td>Faulty control wiring</td>
<td>Check for loose or incorrect wires on system and controller</td>
</tr>
<tr>
<td></td>
<td>No demands to run</td>
<td>Adjust setpoints to what is indicated on the unit Nameplate</td>
</tr>
<tr>
<td></td>
<td>Loss of main power</td>
<td>Check for tripped circuit breaker or blown fuses</td>
</tr>
<tr>
<td></td>
<td>Blower not operating</td>
<td>Refer to supply blower problem section</td>
</tr>
<tr>
<td></td>
<td>Faulty wiring</td>
<td>Check for loose or faulty wiring on system and controller</td>
</tr>
<tr>
<td></td>
<td>Compressor thermal protector is open</td>
<td>Allow one hour for compressor to cool off.</td>
</tr>
<tr>
<td></td>
<td>Compressor delay-timer</td>
<td>Wait 3 minutes for timer</td>
</tr>
<tr>
<td></td>
<td>Compressor overload has tripped</td>
<td>Correct cause and reset overload</td>
</tr>
<tr>
<td></td>
<td>Compressor draws locked rotor amps</td>
<td>Replace compressor (or check fuses on three-phase units)</td>
</tr>
<tr>
<td></td>
<td>Motor windings have shorted</td>
<td>Replace compressor</td>
</tr>
<tr>
<td></td>
<td>Compressor starts but does not pump</td>
<td>Replace compressor</td>
</tr>
<tr>
<td>Low Suction pressure Normal: 60 – 75 PSIG</td>
<td>Excessive bubbles in sight glass (more than 10% of volume)</td>
<td>Lack of refrigerant. Check receiver sight glasses –level indicators. Is the bottom ball floating?</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Blocked filter drier.</td>
</tr>
<tr>
<td></td>
<td>Return air is below 70°F</td>
<td>Is cold outdoor air mixing upstream of the coil?</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Too much cold outdoor air being introduced to the space.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Duct heater not able to accommodate actual load. Review space heating requirement.</td>
</tr>
</tbody>
</table>
Low Suction pressure
Normal: 60 – 75 PSIG

<table>
<thead>
<tr>
<th>Condition</th>
<th>Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head pressure too low</td>
<td>Keep head pressure above 200 PSI by adjusting head pressure regulator</td>
</tr>
<tr>
<td>Return air % RH level too low</td>
<td>Check register locations for short-cycling of air. Check setpoints; unit should not be operating.</td>
</tr>
<tr>
<td>Insufficient evaporator air flow</td>
<td>Evaluate system air flow</td>
</tr>
<tr>
<td>Blocked filter drier</td>
<td>Evaluate filter pressure drop and replace if necessary</td>
</tr>
<tr>
<td>Expansion valve not feeding properly</td>
<td>Evaluate expansion valve setting and performance. Replace if necessary.</td>
</tr>
<tr>
<td>Restriction in refrigeration piping</td>
<td>Check piping for kinks</td>
</tr>
</tbody>
</table>

High Head pressure
Normal: 200–280 PSIG

<table>
<thead>
<tr>
<th>Condition</th>
<th>Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compressor discharge service valves closed or not fully open</td>
<td>Fully open service valves</td>
</tr>
<tr>
<td>Excessive refrigerant charge</td>
<td>Check receiver sight glasses – level indicators. Is the top ball floating? Re-evaluate system charge</td>
</tr>
<tr>
<td>Non-condensables in system</td>
<td>Evacuate or purge system</td>
</tr>
<tr>
<td>Solenoid valve not opening</td>
<td>Check all solenoid valves operation</td>
</tr>
<tr>
<td>Restriction in refrigeration piping</td>
<td>Check coil and tubing for kinks</td>
</tr>
<tr>
<td>Refrigeration system is overloaded</td>
<td>Check operating conditions against the unit design conditions on the nameplate. It may be undersized.</td>
</tr>
<tr>
<td>Too much airflow across evaporator</td>
<td>Verify the bypass damper is open. Balance the system airflow as directed in section 6.4</td>
</tr>
</tbody>
</table>

Outdoor Condenser and Dry Cooler related High Head Pressure

<table>
<thead>
<tr>
<th>Condition</th>
<th>Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air on condenser temperature above design condition.</td>
<td>If this is a chronic situation a larger condenser or dry cooler may be required.</td>
</tr>
<tr>
<td>Excessive pressure drop in line sets</td>
<td>Re-evaluate remote condenser installation and line sizing</td>
</tr>
<tr>
<td>Fan motor overload tripped.</td>
<td>Reduce fan speed and reset overload</td>
</tr>
<tr>
<td>Contactor faulty</td>
<td>Replace contactor</td>
</tr>
<tr>
<td>Outdoor condenser fan does not run.</td>
<td>Control wiring missing from dehumidifier</td>
</tr>
<tr>
<td>ORI valve setting too high</td>
<td>Adjust ORI in water heating mode so unit delivers 10 degrees of water heating.</td>
</tr>
</tbody>
</table>
Unit operates but windows have condensation

- **Poor air distribution**
 - Airflow across evaporator is too high. Coil only doing sensible cooling
 - Unit is undersized
 - Air and/or pool water temperature incorrect

- **Pool Water Heating (PH and PV Models)**
 - Low water temperature rise
 - High water temperature rise

- **Compressor runs for short periods and shuts off**
 - Conditions are being satisfied quickly

- **Low Supply Air Temperature rise in Dehumidification Mode**
 - Too much airflow through unit.

- **High Supply Air Temperature rise in Dehumidification Mode**
 - Too little airflow through unit.

- **Pool Water Heating**
 - Solenoid valve not opening
 - Excessive water flow. This erodes the water heater and must be rectified.

- **Insufficient water flow.**

6.3. Microprocessor Troubleshooting

<table>
<thead>
<tr>
<th>Issue</th>
<th>Possible Cause</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication fault</td>
<td>Broken or loose wire between controller and IO board</td>
<td>Repair any damaged or loose wires.</td>
</tr>
<tr>
<td></td>
<td>Corrosion on pins or terminals</td>
<td>Clean pins and terminals</td>
</tr>
<tr>
<td></td>
<td>Defective IO board – LED is not on</td>
<td>Replace IO board</td>
</tr>
<tr>
<td></td>
<td>Defective controller</td>
<td>Replace controller</td>
</tr>
<tr>
<td>Sensor fault</td>
<td>Sensor wires broken or shorted to ground</td>
<td>Connect sensor directly to IO board. If it functions replace wire.</td>
</tr>
<tr>
<td></td>
<td>Sensor reading outside design parameters</td>
<td>Replace sensor</td>
</tr>
<tr>
<td>Setpoint out of range</td>
<td>Setpoint parameters are outside acceptable limits</td>
<td>Reenter setpoint. Replace sensor if problem persists</td>
</tr>
<tr>
<td>Emergency operation mode on</td>
<td>Manually selected by user</td>
<td>Replace controller</td>
</tr>
</tbody>
</table>
6.4 Airflow Adjustment Procedure

6.4.1 Supply Airflow adjustment. All Seresco units have internal airflow balancing ports. When removed, each port internally recirculates approximately 5% of the unit airflow. This is a quick and simple way to adjust the supply airflow. The plugs and their location are shown in Figure 26.

Figure 26 - Airflow adjustment plugs

6.4.2 Internal Static Pressures (ISP).
The standard NE Series unit is configured for ¾” - 1” External Static Pressure (ESP) depending on options. Should the ESP change, Table 7 can help evaluate whether a blower wheel change may be required. Contact Seresco if there is more than a ½” change in the system ESP.

Contact Seresco if there is more than a ½” change in the system ESP.

<table>
<thead>
<tr>
<th>Model</th>
<th>Design TSP (“WC”)</th>
<th>ISP (“WC”)</th>
<th>ISP with heating coil</th>
</tr>
</thead>
<tbody>
<tr>
<td>004</td>
<td>1.8</td>
<td>0.8</td>
<td>1.1</td>
</tr>
<tr>
<td>005</td>
<td>2.1</td>
<td>1.1</td>
<td>1.4</td>
</tr>
<tr>
<td>006</td>
<td>2.3</td>
<td>1.3</td>
<td>1.6</td>
</tr>
<tr>
<td>007</td>
<td>2.5</td>
<td>1.5</td>
<td>1.8</td>
</tr>
<tr>
<td>008</td>
<td>2.0</td>
<td>1.0</td>
<td>1.3</td>
</tr>
<tr>
<td>010</td>
<td>2.4</td>
<td>1.4</td>
<td>1.7</td>
</tr>
<tr>
<td>012</td>
<td>3.0</td>
<td>2.0</td>
<td>2.3</td>
</tr>
<tr>
<td>014</td>
<td>2.4</td>
<td>1.4</td>
<td>1.7</td>
</tr>
</tbody>
</table>

Table 7 - Internal Static Pressures (“WC”)

6.5. Basic Unit Operation

6.5.1 Controller Set Points
All NE units have been selected based on predetermined operating conditions for each facility. Most operating conditions fall within the parameters suggested in Table 1 on page 5. Changing setpoints can significantly increase the evaporation load from the pool. Before making significant changes (more than 2ºF) to the setpoints indicated on the unit nameplate, contact factory to verify that the resulting load does not exceed unit capacity.

RECOMMENDED SET POINTS:
- Humidity: 50% to 60% RH.
- Air temperature: 2º to 4º F above the pool water temperature.
- Refer to Table 1 on page 5 for guidelines.

WARNING: Never shut down a dehumidifier. Even when not in use, pool water continues to evaporate moisture to the air. It is also prudent to cover the pool if the facility is to be unattended for longer periods of time.

6.5.2 Typical Unit Operation Parameters.
There are several variables that impact unit performance. If the unit is operating within the parameters listed in Table 8, the systems are well balanced and the unit is performing well.

- These are “Rule of Thumb” guidelines only and do not include outdoor air. Outdoor air would need to be shut off fully during the time of the measurement or be factored into these values based on its exact conditions at the time of the test.
- The indicated refrigerant pressures are the most important to target as they directly impact all aspects of system performance.
- If any operating parameters are outside those listed in Table 8 on page 29, refer to the trouble-shooting guide in section 6.3 for possible solutions.
- Suction temperature once unit has stabilized should not exceed 75ºF or be below 55ºF under normal conditions.
Typical Unit Performance (For R 22 units)

<table>
<thead>
<tr>
<th></th>
<th>Dehumidification</th>
<th>Air Conditioning</th>
<th>Water Heat & A C</th>
<th>Water Heat & Dehumidification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Air Temperature</td>
<td>+ (10 – 15)ºF</td>
<td>- (10 – 15)ºF</td>
<td>- (10 – 15)ºF</td>
<td>+ (0 – 3)ºF</td>
</tr>
<tr>
<td>Air off evaporator</td>
<td>47- 55ºF</td>
<td>47- 55ºF</td>
<td>47- 55ºF</td>
<td>47- 55ºF</td>
</tr>
<tr>
<td>Leaving Water</td>
<td>0 ºF</td>
<td>0 ºF</td>
<td>+ (8 – 10)ºF</td>
<td>+ (8 – 10)ºF</td>
</tr>
<tr>
<td>Temperature change</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suction - PSIG</td>
<td>60 - 80</td>
<td>60 - 80</td>
<td>60 - 80</td>
<td>60 - 75</td>
</tr>
<tr>
<td>High - PSIG</td>
<td>200 - 265</td>
<td>200 - 290</td>
<td>200 - 240</td>
<td>200 - 240</td>
</tr>
</tbody>
</table>

Table 8 – Typical Operating Parameters

6.6. Factory Start-up Supervision

Seresco factory start-up supervision can be purchased with the equipment. A factory start-up includes several key services:

- The expertise of an accomplished, factory-trained technician who will supervise the commissioning of the equipment.
- This Seresco representative will assist the installing contractor with filling out the Start-Up Report.
- They will also inspect the installation to make sure that the dehumidifier has been properly integrated with the rest of the equipment on the jobsite.
- Finally, they can train the maintenance personnel to operate and service the equipment if necessary.

A factory start-up does not include installation assistance. The installing contractor is responsible for ensuring that the system is ready for start-up when the Seresco representative arrives. If the system is not ready, Seresco reserves the right to bill the contractor for a second visit.

When the installing contractor is confident the system will be ready, contact the Seresco Sales representative to schedule the start-up. Please call at least two weeks before the desired start-up date to prevent scheduling conflicts.

Items required for Start-Up

- A service technician and a fully stocked service vehicle.
- A set of refrigerant manifold gauges.
- Air balancing equipment (magnehelic differential pressure gauge).
- Volt/Amp/Ohm meters.
- A digital thermometer w/clamp on sensors.
- A halogen leak detector, R-22 and a scale.

Items to be Completed Before Start-up

- Refrigerant leak-check (with halogen leak detector) and inspect the unit for internal concealed damage.
- Level and support the dehumidifier properly.
- Install the outdoor air duct filters and damper (if applicable).
- Install the condensate P- trap and drain lines and prime P-trap.
- Pipe the remote condenser fan pressure controls to the condenser hot gas lines (if applicable).
- Evacuate and leak-check the remote condenser line set (if applicable).
- Tighten all electrical connections and verify that the line voltage is correct for the unit.
- Install all controls and verify that all field wiring matches the schematic.
- Fill and heat the pool and room to design conditions.
- Install the pool water piping and a flow meter (if applicable). Purge all air from pool lines.
- A complete system air balancing.
6.7 Warranty

General Policy
This warranty applies to the original equipment owner and is not transferable. Seresco Inc. warrants as set forth and for the time periods shown below that it will furnish, through a Seresco Inc. authorized installing contractor or service organization, a new or rebuilt part for a part which has failed because of defect in workmanship or material. Seresco Inc. reserves the right to apply handling and inspection charges in the case of parts or equipment improperly returned as defective whether under warranty or not.

Warranty Registration and Start-up Report
Warranty void unless upon start-up of the unit the "Warranty Registration and Start-up Report" is completed and sent to the factory within one week of initial start-up. This report will also register the compressor warranty with the compressor manufacturer.

Labor Warranty
During the first 90 days from initial start-up and subject to prior approval from the factory Seresco Inc. will provide and/or reimburse the required labor, materials, and shipping costs incurred in the replacement or repairing of a defective part.

Parts Warranty
If any part supplied by Seresco Inc. fails because of a defect in workmanship or material until completion of the 24th month from date of shipment, Seresco Inc. will furnish a new or rebuilt part F.O.B. factory. No reimbursement will be made for expenses incurred in making field adjustments or replacements unless specifically approved in writing beforehand by Seresco Inc.

Applicability
This warranty is applicable only to products that are purchased and installed in the United States and Canada. This warranty is NOT applicable to:

1. Products that have become defective or damaged as a result of the use of a contaminated water circuit or operation at abnormal water temperatures and/or flow rates.
2. Parts that wear out due to normal usage, such as air filters, belts and fuses. Refrigerant lost during the parts warranty will be reimbursed in accordance to the current market price of refrigerant at the time of repair. Seresco Inc. will not be responsible for refrigerant lost from the system due to improperly installed contractor piping to the remote outdoor air cooled condenser.
3. Refrigerant coils that corrode due to improperly balanced pool chemistry or corrosive air quality.
4. Components that have been relocated from their original placement at the factory.
5. Any portion of the system not supplied by Seresco Inc.
6. Products on which the model and/or serial number plates have been removed or defaced.
7. Products which have become defective or damaged as a result of unauthorized opening of refrigeration circuit, improper wiring, electrical supply characteristics, poor maintenance, accidents, transportation, misuse, abuse, fire, flood, alteration and/or misapplication of the product.
9. Products on which payment is in default.

Transportation Costs
After the initial 90-day warranty period has expired, charges covering transportation of the defective part to Seresco Inc. from the customer site and replacement part(s) from Seresco Inc. to the customer site are not covered by this warranty.
Limitations
This warranty is given in lieu of all other warranties. Anything in the warranty notwithstanding, any implied warranties of fitness for particular purpose and merchantability shall be limited to the duration of the express warranty.
Manufacturer expressly disclaims and excludes any liability for consequential or incidental damage for breach of any express or implied warranty.

Where a jurisdiction does not allow limitations or exclusions in a warranty, the foregoing limitations and exclusions shall not apply to the extent of the legislation, however, in such case the balance of the above warranty shall remain in full force and effect.

This warranty gives specific legal rights. Other rights may vary according to local legislation.

Force Majeure
Seresco Inc. will not be liable for delay or failure to provide warranty service due to government restrictions or restraints, war, strikes, material shortages, acts of God or other causes beyond Seresco Inc. control.

Second to Fifth Year Compressor Warranty (optional)
This extended warranty must be purchased before the shipment of the unit.

Seresco Inc. will provide a replacement compressor for 60 months from the date of shipment provided the compressor fails as a result of manufacturing defect and is returned to the factory with transportation prepaid. This extended compressor warranty is subject to all the terms of the standard Seresco Inc. warranty but applied to the compressor only.

No charges attributed to the replacement of a component, except as detailed in the above Labor Warranty, will be allowed unless specifically granted in writing beforehand by Seresco Inc.

Second to Fifth year Coil Warranty (optional)
This extended warranty must be purchased before the shipment of the unit.

Under this warranty a replacement coil will be supplied at Seresco Inc.’s expense, provided the failed coil is returned to the factory with transportation prepaid. This extended coil warranty is subject to all the terms of the standard NE Series warranty but applied to the coil only.

This warranty is contingent to the proper maintenance of pool water chemistry including a pH of between 7.2 and 7.6 free chlorine not exceeding 2.0 ppm and combined chlorine maintained at less than 0.3 ppm. These parameters are to be measured and recorded daily and be available for review upon request.

Second to Tenth year Coil Warranty (optional)
This extended warranty must be purchased before the shipment of the unit.

Under this warranty a replacement coil will be supplied at Seresco Inc.’s expense, provided the failed coil is returned to the factory with transportation prepaid. This extended coil warranty is subject to all the terms of the standard NE Series warranty but applied to the coil only.

This warranty is contingent to the proper maintenance of pool water chemistry including a pH of between 7.2 and 7.6 free chlorine not exceeding 2.0 ppm and combined chlorine maintained at less than 0.3 ppm. These parameters are to be measured and recorded daily and be available for review upon request.
6.8 Refrigeration Diagrams

Figure 26 – Refrigeration Diagram – Basic unit and Outdoor Condenser

Figure 27 – Refrigeration Diagram – Pool Heating and Outdoor Condenser
6.9 Field Wiring Diagram

CONTROL FIELD WIRING DIAGRAM

- AC Common (MUST NOT BE GROUNDED, WILL DAMAGE BOARD)
- 24 VAC (max 50 VA)
- TO OUTDOOR CONDENSER
- AUXILIARY POOL WATER HEATER
- ALARM
- SYSTEM ON
- OUTDOOR AIR DAMPER ON/OFF
- EXHAUST FANDAMPER
- PURGE FANDAMPER
- STAGE ONE HEAT
- STAGE TWO HEAT
- MODULATING HEAT CONTROL (0-10 VDC)
- CATEGORY 3 TWISTED PAIRS (ETH/GB IN/OUT)
- DC COMMON FOR MODULATING CONTROLS
- REMOVE JUMPER FOR FIRE STAT INTERLOCK
- REMOTE COMPRESSOR LOCKOUT

6.10 Typical Electrical Panel Layout

Electrical Panel Layout

<table>
<thead>
<tr>
<th>Electrical Components</th>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compressor Contactor(s)</td>
<td>C1, C2 Primary Fuses (3A time-delay, type CC)</td>
<td>FU-T1</td>
</tr>
<tr>
<td>Blower Contactor</td>
<td>M1 Secondary Fuse (10A time-delay, type CC)</td>
<td>FU-C1</td>
</tr>
<tr>
<td>Transformer</td>
<td>T1 Processor Control Board</td>
<td>PCB</td>
</tr>
<tr>
<td>1 PH Run Capacitor(s)</td>
<td>RC1, RC2 Blower Fuses (type CC) when needed</td>
<td>FU-M1</td>
</tr>
</tbody>
</table>
6.11 Start Up and Warranty Registration Form

Project Name __________________________
Location _________________________________
Jobsite telephone number ____________
Seresco Representative ____________
NE Series Model _________________________
Serial Number __________________________
Compressor Serial # ________________
Voltage on site __________________________

<table>
<thead>
<tr>
<th>Electrical Data</th>
<th>L1 – L2</th>
<th>L2 – L3</th>
<th>L1 – L3</th>
<th>Nameplate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compressor Amperage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compressor Voltage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blower Amperage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blower Voltage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Installation Review and Checklist

☐ Supply air blowing on exterior doors and windows?
☐ No supply-return air short-circuiting?
☐ Outdoor air connected to Seresco unit?
☐ Exhaust fan installed and operating?
☐ Vapor Barrier installed?
☐ Adequate service access provided?
☐ Units level and vibration isolated?
☐ Flex-Connectors used at both unit duct connections?
☐ Condensate P-Trap installed and filled?
☐ Condensate line tested?
☐ Pool Water piping properly installed?
☐ Pool water circulating pump operating?
☐ Auxiliary circulating pump installed?
☐ Pool water flow per specifications?
☐ Floor Drain in mechanical room?
☐ Chemicals stored in separate ventilated room?
☐ Outdoor air cooled condenser or Dry Cooler properly installed?
☐ Unit nameplate voltage verified?
☐ Main disconnect installed?
☐ Wiring connections checked & tightened?
☐ Control wiring to outdoor condenser or Dry Cooler installed?
☐ Control wiring to auxiliary pool water heater installed?
☐ Ethernet cable connected to unit.
☐ Blower rotation correct?
☐ Air balance report on file?
Outdoor Air cooled condenser or Dry Cooler location:
- ft [above / below] Seresco unit
- If above, oil traps installed: [yes / no]
- Same Level as Seresco Unit
- Condenser/Dry Cooler Model installed:...............................

Water Cooled and Dry Cooler AC
- Fluid GPM.................................
- Glycol %:.................................
- Glycol stabilizers added: [yes / no]
- Piping and valves installed per Specs?

□ Total line length to OACC or Dry Cooler...............................
□ Hot gas line size...............................
□ Liquid line size...............................
□ Total lbs R-22 added...............................
□ Pipe size to Dry Cooler...............................
□ Water/fluid temperatures:
 - Entering Seresco unit:...............................
 - Exiting Seresco unit:...............................

<table>
<thead>
<tr>
<th>Operational Data</th>
<th>Controller Programming</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sensor</td>
</tr>
<tr>
<td>Return Air (°F)</td>
<td></td>
</tr>
<tr>
<td>Supply Air (°F)</td>
<td></td>
</tr>
<tr>
<td>Return Air %RH</td>
<td></td>
</tr>
<tr>
<td>Entering Water (°F)</td>
<td></td>
</tr>
<tr>
<td>Leaving Water (°F)</td>
<td></td>
</tr>
<tr>
<td>Water – GPM</td>
<td></td>
</tr>
<tr>
<td>Air off evaporator (°F)</td>
<td></td>
</tr>
<tr>
<td>Suction - PSIG</td>
<td></td>
</tr>
<tr>
<td>High - PSIG</td>
<td></td>
</tr>
<tr>
<td>Compressor Discharge Temp (°F)</td>
<td></td>
</tr>
<tr>
<td>Sight Glass Clear?</td>
<td></td>
</tr>
<tr>
<td>Receiver sight glass ball floating? Top/Bottom</td>
<td></td>
</tr>
</tbody>
</table>

Comments:..
..
..
..
..
..

Technician.. Company:..........................

Telephone Number:................................. Date:.................................
Design Checklist

Project: __
Reviewed by: ___

System design and air flow pattern
☐ All exterior windows, doors and skylights are fully blanketed with supply air.
☐ No stagnant areas including the water surface.
☐ Vapor retarder is installed on the warm side of the dew point in the roof and walls.

Evaporation rate and latent loads
☐ Pool load calculated.
☐ Outdoor Air load calculated.
☐ Water features reviewed with factory.
☐ Spectators and swim meet mode calculated.

Required Access Space
☐ Unit is accessible.
☐ Unit has adequate service clearance.
☐ Suspended unit has unobstructed access.

Exhaust Air
☐ Exhaust fan identified on the plans.
☐ Exhaust Air is minimum 110% the outdoor air CFM.
☐ Exhaust air drawn from the whirlpool or any other warm or highly active water area.

Supply Air
☐ System delivers 4 air changes per hour or greater.
☐ Supply air is delivered to the deck area.
☐ No short-circuiting of supply air to the return duct.

Cooling and Heating loads
☐ Sensible cooling load has been calculated for the space design temperature.
☐ Heating load has been calculated for the space design temperature.
☐ Outdoor air has been included in all load calculations.

Outdoor Air
☐ 1.0 CFM/ft² of water and wet deck for pool with water features.
☐ 0.5 CFM/ft² of water and wet deck for regular pool.
☐ 15 CFM per spectator.

Comments:
__
__
__
__